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Abstract

In this paper, the high-frequency response of isotropic-laminated cylindrical shells is investigated using a layer-wise
theory. The cylindrical shell is discretized in an arbitrary number of layers in the radial direction, and a three-dimen-
sional stress state is assumed in each layer. Approximate numerical results obtained by the layer-wise theory are com-
pared with the exact wave-dispersion analytical results. The very good agreement between approximate and exact
results indicates that the layer-wise theory can accurately describe of the dynamic response of cylindrical shells in
the high-frequency (short-wavelength) range.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Various models have been developed to describe the mechanical behavior of thin cylindrical shells
(Leissa, 1973). Classical theories do not, however, consider the effect of transverse stress or strain compo-
nents, and therefore are inadequate for the dynamic analysis of thick shells or even thin shells in the high-
frequency (short-wavelength) range. Higher-order shell theories, which take transverse shear into account,
have often been employed to improve the response of classical theories. However, in the case of thick shells
or when the analysis is made in the high-frequency range, their results are not always reliable (Reddy, 1989).
Indeed, when the wavelengths of disturbances propagating in the shell are of the same order as its thickness,
the usual polynomial interpolation of higher-order shell models can no longer accurately reproduce the
through-thickness displacement fields. More so in the case of laminated shells. Reviews of different models
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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for shells, with particular emphasis on the proper treatment of transverse shear effects may be found in an
article by Noor et al. (1996).

Layer-wise theories offer alternatives that were proven by many authors to be quite effective in handling
thick composite shells. For instance, an approximate analysis based on the three-dimensional theory of
elasticity was developed by Loy and Lam (1999), who used a layer-wise theory to study vibration of thick
cylindrical shells. In another contribution, Huang and Dasgupta (1995) proposed a semi-analytical, three-
dimensional, layer-wise theory to calculate natural frequencies of thick laminated composite cylindrical
shells. Reddy and Teply (1991) employed a discrete-layer theory to investigate the buckling analysis of sim-
ply supported cross-ply cylindrical shells. Icardi (1998) proposed a zig-zag shell model capable of accurately
predicting both the overall response and stress distributions of laminated shells. In order to study the active
and sensory response of piezoelectric composites, Lee and Saravanos (2000) have employed layer-wise dis-
cretizations to interpolate both the electric potential and temperature fields while keeping a single-layer
model for the displacement across the thickness of the laminated shell. Their mixed piezothermoelastic shell
theory has been demonstrated to accurately represent the response of thin and moderately thick piezoelec-
tric shells.

It is the objective of this paper to further assess the ability of a layer-wise theory to reproduce the re-
sponse of cylindrical laminated shells in the high-frequency (short-wavelength) range. In particular, the
present study employs a model based on Reddy�s discrete layer-wise theory (Reddy and Teply, 1991).
The displacements are interpolated in the through-thickness direction using piece-wise linear functions.
The governing equations are formulated in the frequency domain and written in a state space form. The
very good agreement obtained in comparisons between approximate and exact frequency spectra of guided
waves propagating in an infinite, laminated, cylindrical shell, made of isotropic layers, show that the
layer-wise theory is capable of simulating the dynamic response of cylindrical laminated shells in the high-
frequency (short-wavelength) range. The solution of the state equation is obtained by employing an algo-
rithm based on a discrete version of the Riccati transformation (Dieci et al., 1988; Braga et al., 2000). This
algorithm is stable in a wide frequency range, even when the solution involves combinations of standing
waves associated with real eigenvalues of the state matrix. As an example of application of the algorithm,
the frequency response of a laminated cylindrical shell excited by an axi-symmetric, radial, co-localized load
is evaluated and compared with similar results obtained with plane axi-symmetric finite elements of a
commercial code.
2. Theoretical formulation

We employ a model based on the layer-wise theory of Reddy (see, e.g., Reddy and Robbins, 1994) to
describe the response of a laminated cylindrical shell as show in Fig. 1. This structure is formed by an arbi-
trary number of perfectly bonded, elastic layers, each of uniform thickness. In each lamina a three-dimen-
sional stress state is assumed. The variation, through the thickness, of the three-dimensional displacement
field is assumed as follows:
urðr; h; z; tÞ ¼
XN
a¼1

naðrÞuar ðh; z; tÞ

uhðr; h; z; tÞ ¼
XM
b¼1

wbðrÞubhðh; z; tÞ

uzðr; h; z; tÞ ¼
XP
c¼1

gcðrÞuczðh; z; tÞ

ð1Þ



Fig. 1. Geometry of a cylindrical laminated shell.
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In Reddy�s layer-wise theory the interpolation functions na, wb, gc are arbitrary. However, in this paper, we
employ only linear Lagrange interpolation functions. Also, we consider the same number of interpolation
functions (N =M = P) to represent the displacement field. We take a = b = c = 1,2, . . . ,nL,nL + 1, where
nL is the number of layers in the laminated shell. uar ; u

a
h and uaz are, respectively, the displacements in the

radial, circumferential, and axial direction between the layers a � 1 and a. In this theory the number of sub-
divisions nL does not necessarily has to coincide with the number of homogeneous layers. A homoge-
neous layer can be subdivided into two or more sub-layers increasing the number of interpolation
functions. The interpolation functions are given by
naðrÞ ¼ waðrÞ ¼ gaðrÞ ¼

r2 � r
r2 � r1

if r1 < r < r2 ða ¼ 1Þ
r � ra�1

ra � ra�1

if ra�1 < r < ra ða ¼ 2; 3; . . . ; nLÞ
raþ1 � r
raþ1 � ra

if ra < r < raþ1 ða ¼ 2; 3; . . . ; nLÞ
r � rnL

rnLþ1 � rnL
if rnL < r < rnLþ1 ða ¼ nL þ 1Þ

0 otherwise

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ
The variational principle applied to the laminated cylindrical shell takes the form:
Z
V
ðT 1dS1 þ T 2dS2 þ T 3dS3 þ T 4dS4 þ T 5dS5 þ T 6dS6ÞdV

þ
Z
V
q

o2ur
ot2

dur þ
o2uh
ot2

duh þ
o2uz
ot2

duz

� �
dV �

Z
A
ðfrdurÞdA ¼ 0 ð3Þ
where fr represent the external radial surface load. TI and SI (I = 1, . . ., 6) are the stress and strain compo-
nents in cylindrical coordinates and q is the density of the cylindrical shell. The relation between the strain
and the displacement components in cylindrical coordinates are given by
S1 ¼
our
or

S2 ¼
ur
r
þ 1

r
ouh
oh

S3 ¼
ouz
oz

S4 ¼
ouh
oz

þ 1

r
ouz
oh

S5 ¼
our
oz

þ ouz
or

S6 ¼
1

r
our
oh

þ ouh
or

� uh
r

ð4Þ
The constitutive equation for an orthotropic layer with material symmetry axes coinciding with the axial,
circumferential, and radial directions, may be expressed as
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T 1

T 2

T 3

T 4

T 5

T 6

2
666666664

3
777777775
¼

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

2
666666664

3
777777775

S1

S2

S3

S4

S5

S6

2
666666664

3
777777775

ð5Þ
For a isotropic layer:
c11 ¼ c22 ¼ c33 ¼ kþ 2l c12 ¼ c13 ¼ c23 ¼ k c44 ¼ c55 ¼ c66 ¼ l
where k, l are the Lamé�s elastic constants. In order to simplify the variational Eq. (3) we define the fol-
lowing generalized forces:
P a
i ¼

Z raþ1

ra

T i
dnaðrÞ
dr

rdr i ¼ 1; 5; 6 ð6Þ

T a
i ¼

Z raþ1

ra

T in
aðrÞdr i ¼ 2; 4; 6 ð7Þ

Ma
i ¼

Z raþ1

ra

T in
aðrÞrdr i ¼ 3; 4; 5 ð8Þ
where ra and ra + 1 are, respectively, the inner and the outer radio of a homogeneous sub-lamina of the shell.
Also we define the following quantities:
Ab;aðcÞ ¼
Z raþ1

ra

cnbðrÞnaðrÞrdr Bb;aðcÞ ¼
Z raþ1

ra

cnbðrÞnaðrÞdr

Cb;aðcÞ ¼
Z raþ1

ra

cnbðrÞ dn
aðrÞ
dr

dr Db;aðcÞ ¼
Z raþ1

ra

c
nbðrÞ
r

naðrÞdr

Eb;aðcÞ ¼
Z raþ1

ra

c
dnbðrÞ
dr

dnaðrÞ
dr

rdr F b;aðcÞ ¼
Z raþ1

ra

cnbðrÞ dn
aðrÞ
dr

rdr

ð9Þ
where c may represent any one of the mechanical properties of the layers.
From the variational principle in Eq. (3), and using the definitions in Eqs. (6)–(9), we obtain the follow-

ing set of equations:
o

oz

Ma
5

Ma
4

Ma
3

2
4

3
5þ o

oh

T a
6

T a
2

T a
4

2
4

3
5 ¼

P a
1

P a
6

P a
5

2
4

3
5þ

T a
2

�T a
6

0

2
4

3
5þ

XN
b¼1

Ab;aðqÞ 0 0

0 Ab;aðqÞ 0

0 0 Ab;aðqÞ

2
64

3
75 o

2

ot2

ubr
ubh
ubz

2
64

3
75þ

�frqa

0

0

2
4

3
5
ð10Þ
where qa = 0, except for a = N = nL + 1 when qa = rnL+1 (outer radius).
We are interested in the harmonic response of the cylindrical shell, so a generic function F(r,h,z, t) can be

written in the form:
F ðr; h; z; tÞ ¼ F nðr; zÞeiðnh�xtÞ ð11Þ

Using the above assumption, Eqs. (6)–(8) can be rewritten as:
P a
i ¼ pai ðzÞeiðnh�xtÞ ð12Þ

T a
i ¼ tai ðzÞeiðnh�xtÞ ð13Þ
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Ma
i ¼ ma

i ðzÞeiðnh�xtÞ ð14Þ

Now, Eq. (10) can be rewritten using Eqs. (11)–(14). Therefore:
d

dz

ma
5

ma
4

ma
3

2
664

3
775þ in

ta6

ta2

ta4

2
664

3
775 ¼

pa1

pa6

pa5

2
664

3
775þ

ta2

�ta6

0

2
664

3
775� x2

XN
b¼1

Ab;aðqÞ 0 0

0 Ab;aðqÞ 0

0 0 Ab;aðqÞ

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U0

ubr

ubh

ubz

2
6664

3
7775þ

�frqa

0

0

2
664

3
775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
F0

ð15Þ

Also, Eqs. (12)–(14) are rewritten using the constitute equations (5) yielding:
ma
5

ma
4

ma
3

2
64

3
75 ¼

XN
b¼1

0 0 F a;bðc55Þ
0 0 inBb;aðc44Þ

F a;bðc13Þ þ Bb;aðc23Þ inBb;aðc23Þ 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U1

ubr

ubh

ubz

2
664

3
775

þ
XN
b¼1

Ab;aðc55Þ 0 0

0 Ab;aðc44Þ 0

0 0 Ab;aðc33Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V1

d

dz

ubr

ubh

ubz

2
664

3
775 ð16Þ

ta6

ta2

ta4

2
664

3
775 ¼

XN
b¼1

inDb;aðc66Þ Ca;bðc66Þ � Db;aðc66Þ 0

Ca;bðc12Þ þ Db;aðc22Þ inDb;aðc22Þ 0

0 0 inDb;aðc44Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U2

ubr

ubh

ubz

2
664

3
775

þ
XN
b¼1

0 0 0

0 0 Bb;aðc23Þ

0 Bb;aðc44Þ 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V2

d

dz

ubr

ubh

ubz

2
664

3
775 ð17Þ

pa1

pa6

pa5

2
664

3
775 ¼

XN
b¼1

Eb;aðc11Þ þ Cb;aðc12Þ inCb;aðc12Þ 0

inCb;aðc66Þ Eb;aðc66Þ � Cb;aðc66Þ 0

0 0 Eb;aðc55Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U3

ubr

ubh

ubz

2
664

3
775

þ
XN
b¼1

0 0 F b;aðc13Þ

0 0 0

F b;aðc55Þ 0 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V3

d

dz

ubr

ubh

ubz

2
664

3
775 ð18Þ
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ta2

�ta6

0

2
664

3
775 ¼

XN
b¼1

Ca;bðc12Þ þ Db;aðc22Þ inDb;aðc22Þ 0

�inDb;aðc66Þ Db;aðc66Þ � Ca;bðc66Þ 0

0 0 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U4

ubr

ubh

ubz

2
664

3
775

þ
XN
b¼1

0 0 Bb;aðc23Þ

0 0 0

0 0 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V4

d

dz

ubr

ubh

ubz

2
664

3
775 ð19Þ
By applying Eqs. (16)–(19) in Eq. (15), and after some manipulation we obtain the state equation:
df

dz
¼ Afþ F ð20Þ
where F is the distributed load vector defined as:
F ¼
0

F0

� �
ð21Þ
The state vector f, and the state matrix A are defined as:
f ¼
u

m

� �
A ¼

A11 A12

A21 A22

� �
ð22Þ
with
u ¼
ur

uh

uz

2
64

3
75 m ¼

m5

m4

m3

2
64

3
75 ð23Þ
and
A11 ¼ �V�1
1 U1 A12 ¼ V�1

1 A21 ¼ N2 þN1V
�1
1 U1 A22 ¼ �N1V

�1
1 ð24Þ
ur, uh, uz are vectors of dimension nL + 1 grouping the variables ubr ; u
b
h ; u

b
z . m5, m4, m3 are generalized forces,

also of dimension nL + 1 defined in Eq. (14). The matrices N1 and N2 take the form:
N1 ¼ inV2 � V3 � V4 N2 ¼ U3 þU4 � inU2 � x2U0 ð25Þ
The state equation (20) describes the harmonic response of the laminated cylindrical shell. The state matrix
A depends on the circumferential harmonic n, the frequency x, and the number of homogeneous layers nL.
3. Exact frequency spectrum

3.1. Homogeneous media

In cylindrical coordinates, the displacement field in a homogeneous isotropic body can be written in the
form:
u ¼ ruþr� ðvezÞ þ r � ðgezÞ ð26Þ



4284 A.M.B. Braga, C.E. Rivas A. / International Journal of Solids and Structures 42 (2005) 4278–4294
In this equation ez is a unit vector in the axial direction, and the scalar potentials u, v and g satisfy the wave
equations:
r2u ¼ 1

c2L

o2u
ot2

and r2 v

g

� �
¼ 1

c2T

o2

ot2
v

g

� �
ð27Þ
where cL and cT are the speeds of longitudinal and transverse waves respectively.
At this point we introduce the three-dimensional array of scalar potentials /, defined as:
/ ¼
u

v

g

8><
>:

9>=
>; ð28Þ
Considering harmonic motions of the form:
/ ¼ /ðrÞeiðnhþkzz�xtÞ ð29Þ

u ¼ uðrÞeiðnhþkzz�xtÞ ð30Þ

t ¼ tðrÞeiðnhþkzz�xtÞ ð31Þ
where t is the traction vector acting across a surface normal to the radial direction, and kz is the wave-num-
ber in the axial direction.

Using the above assumption, Eqs. (27) can be solved, yielding:
/ðrÞ ¼
X2

a¼1

UaðrÞca ð32Þ
where
UaðrÞ ¼ diagðH a
nðkLrÞ;H a

nðkTrÞ;H a
nðkTrÞÞ; a ¼ 1; 2 ð33Þ
and ca is the three-dimensional array of constants, while kj (j = L,T) represent the wave-number in the lon-
gitudinal and transverse directions, respectively. In Eqs. (33), H a

nðxÞ are the Hankel functions (Abramowitz
and Stegun, 1972).

From Eqs. (32) and (26), we obtain the displacement field in cylindrical coordinates:
uðrÞ ¼
X2

a¼1

AaðrÞsaðrÞca ð34Þ
where
s1ðrÞ ¼ diagðeikLr; eikTr; eikTrÞ; ð35Þ

and
s2ðrÞ ¼ s�1
1 ðrÞ ð36Þ
The traction vector tðrÞ is obtained by substituting Eq. (34) in the elastic stress–strain relation for isotropic
media in cylindrical coordinates. In matrix form, we can write the traction field as:
tðrÞ ¼
X2

a¼1

LaðrÞsaðrÞca ð37Þ
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The components of the matrices Aa(r) contain the Hankel functions of Eq. (33) scaled by complex exponen-
tials. Both matrices, Aa(r) and La(r) can be found in the article by Braga et al. (1990).

In these equations, the quantities with the subscript a = 1 are associated with partial waves that prop-
agate radially outward (outgoing waves), while partial waves propagating in the opposite direction (incom-
ing waves), are represented by quantities with a = 2. In this way, we can write the displacement field and the
traction vector as:
uðrÞ ¼ u1ðrÞ þ u2ðrÞ ð38Þ

tðrÞ ¼ t1ðrÞ þ t2ðrÞ ð39Þ

where
uaðrÞ ¼ Maðr; r0Þuaðr0Þ ð40Þ

taðrÞ ¼ �ixZaðrÞuaðrÞ ð41Þ

with
Maðr; r0Þ ¼ AaðrÞsaðr � r0ÞA�1
a ðr0Þ ð42Þ

ZaðrÞ ¼
i

x
LaðrÞA�1

a ðrÞ ð43Þ
The matrices Ma(r,r0) relate the displacement field associated with the outgoing (a = 1), or incoming
(a = 2), wave at the radial coordinate r with its value at r0. The operator Za(r) is the local impedance of
the homogeneous solid, relating the traction with the velocity field across a cylindrical surface of radius
r0. We also observe that
M�1
a ðr; r0Þ ¼ Maðr0; rÞ and Maðr0; r0Þ ¼ I ð44Þ
3.2. The surface impedance of a cylindrical layer

For an infinite cylinder as shown in Fig. 2, G0 and G1 represent the impedance tensor along its inner (r0)
and outer (r1) radius, respectively. If the interior surface of the layer is traction free, we let G0 = 0. At r = r0,
we have:
tðr0Þ ¼ �ixG0uðr0Þ ð45Þ

Here, the generalized reflection tensor, which relates the incoming and outgoing fields everywhere, is de-
fined. At the cylindrical surface r = r0 the reflection tensor is denoted by R0 and defined by the following
expression
u1ðr0Þ ¼ R0u2ðr0Þ ð46Þ

Combining this equation with Eqs. (38) and (39) we obtain
tðr0Þ ¼ �ix½Z1ðr0ÞR0 þ Z2ðr0Þ�ðR0 þ IÞ�1
uðr0Þ ð47Þ
Comparing Eqs. (45) and (47), we can get the reflection tensor at the inner radius
R0 ¼ ½Z1ðr0Þ �G0��1½G0 � Z2ðr0Þ� ð48Þ
The generalized reflection tensor is obtained by combining Eqs. (46) and (40):
u1ðrÞ ¼ HðrÞu2ðrÞ r0 < r < r1 ð49Þ



Fig. 2. Homogeneous isotropic cylindrical layer.
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where
HðrÞ ¼ M1ðr; r0ÞR0M2ðr0; rÞ ð50Þ

Similarly to Eq. (45), at r = r1 we have:
tðr1Þ ¼ �ixG1uðr1Þ ð51Þ

where G1 is the surface impedance tensor of the cylindrical layer, given by
G1 ¼ ½Z1ðr1ÞHðr1Þ þ Z2ðr1Þ�½IþHðr1Þ��1 ð52Þ
3.3. The surface impedance of laminated cylindrical shells

The results of the preceding sub-section are generalized to calculate the surface impedance of a laminated
cylindrical shell made of m isotropic layers as shown in Fig. 3. The surface impedance Gm is obtained recur-
sively using the following algorithm

Given G0, kz, n, ex
For j = 1 to m Repeat
Rj�1 ¼ �
h
Z

ðjÞ
1 ðrj�1Þ �Gj�1

i�1�
Z

ðjÞ
2 ðrj�1Þ �Gj�1

	
HðrjÞ ¼ M

ðjÞ
1 ðrj; rj�1ÞRj�1M

ðjÞ
2 ðrj�1; rjÞ

Gj ¼
h
Z

ðjÞ
1 ðrjÞHðrjÞ þ Z

ðjÞ
2 ðrjÞ

ih
IþHðrjÞ

i�1
End

In the last layer, we can write:
tðrmÞ ¼ �ixGmuðrmÞ ð53Þ

We now consider a traction-free laminated cylinder, that is, tðrmÞ ¼ 0. Free guided waves propagate in the
shell for those combinations of the axial wave-number, kz, circumferential harmonic, n, and frequency, x,
that satisfy the following equation:
detðGmÞ ¼ 0 ð54Þ



Fig. 3. Laminated cylindrical shell.
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Hence, zeros of the function Gm(x,kz,n) generate the frequency spectrum of guided waves that propagate
freely in the infinite laminated cylinder. For a given circumferential harmonic, n, the spectrum is repre-
sented by curves generated by those pairs (x,kz) that make the surface impedance tensor to be singular.
These are dispersion curves of the guided waves in the cylindrical shell.
4. Validation of the approximate theory

The high-frequency response predicted by the approximate model is assessed in this section by compar-
ing frequency spectra of free guided waves propagating in an infinite laminated shell, calculated by both the
layer-wise theory and the exact analysis described in the preceding section. The approximate frequency
spectrum can be easily evaluated from the state matrix in Eq. (20). In fact, for a given frequency, x,
and circumferential harmonic, n, the wave-numbers of guided waves that propagate freely in the cylindrical
laminate are directly related to the eigenvalues of the state matrix. If an eigenvalue of the state matrix A,
denoted as �ikz, is complex, it represents an attenuated standing wave. If �ikz is pure imaginary or pure
real, it either represents, respectively, a propagating or a near-field standing wave.

Fig. 5 shows a comparison between exact and approximate guided wave frequency spectra for an infinite,
homogeneous, isotropic cylindrical shell of steel, as can be seen in Fig. 4(a). Results are for n = 1 and a shell
with outer radius to thickness ratio equal to 11 (R/h = 11). The shell was divided into 10 homogeneous
layers of equal thickness (nL = 10). Only dispersion curves for propagating waves, with real wave-numbers
(IðkzÞ ¼ 0), are depicted. We recall that those waves are associated with pure imaginary eigenvalues of the
state matrix in Eq. (20). Curves are plotted in terms of the thickness to wavelength ratio (h/k). We observe
that the agreement between approximate and exact dispersion curves are excellent, up to wavelengths that
are closely to 40% shorter than the shell thickness.

Fig. 6 shows the same comparison for a laminated cylindrical shell composed of three homogeneous,
equally thick, layers of steel, aluminum, and copper as shown in Fig. 4(b). In this case, the thickness of each
one of the three homogeneous layers were divided into 10 sub-layers of equal thickness. The number of
interpolation functions in the layer-wise model was then nL + 1 = 31. In this case results are for the circum-
ferential harmonic n = 0, and only propagating waves are depicted. The laminated shell has an outer radius



(a) (b)

Fig. 4. Section of two cylindrical shells (R1/h1 = 11,R2/h2 = 6).
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Fig. 6. Frequency spectrum of a laminated cylinder (n = 0, R/h = 6).
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Fig. 5. Frequency spectrum of an isotropic cylinder (n = 1, R/h = 11).
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Fig. 7. Dispersion curve for an isotropic cylinder (n = 1, R/h = 11).
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Fig. 8. Dispersion curve for a laminated cylinder (n = 0, R/h = 6).

A.M.B. Braga, C.E. Rivas A. / International Journal of Solids and Structures 42 (2005) 4278–4294 4289
to thickness ratio equal to 6 (R/h = 6). The agreement between approximate and exact dispersion curves
is again very good. Now, up to wavelengths that are, at least, 80% shorter than the shell thickness.

We also show, in Figs. 7 and 8, the same results depicted in Figs. 5 and 6, but now presented in terms of
the wave-speed rather than the wavelength. All results presented in this section clearly indicate that the
Table 1
Mechanical properties for isotropic materials (q ¼ 2700 Kg/m3, l ¼ 2:5947� 1010 Pa, e c ¼ 3100 m/s)

q
q

k
l

l
l

cL
c

cT
c

Aluminum 1 2.13 1 2.03 1
Steel 2.88 4.29 2.86 1.86 0.99
Copper 3.29 3.62 1.81 1.48 0.74
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layer-wise model, based on Reddy�s theory (Reddy and Teply, 1991), is capable of accurately describing the
shell response in the short-wavelength range. The mechanical properties of the isotropic materials used in
this paper can be found in Table 1.
5. Solution of the state equation

For a proper set of boundary conditions, solutions for the state equation developed in Section 2, Eq.
(20), provide approximate representations of the dynamic response of laminated cylindrical shells. We ver-
ified in the preceding section that these approximate representations may be accurate in a wide frequency
range, even for wavelengths that are much shorter than the shell thickness.

The same approach employed to obtain the exact solution for guided waves in the cylindrical shell, de-
scribed in Section 3, can be applied to the approximate theory. Again, after the proper transformations,
namely when harmonic fields, both in time and in the circumferential direction, are considered, the problem
becomes one-dimensional. While in Section 3 we were concerned with the exact solution in the radial direc-
tion, now, for the approximated problem, we need to obtain the generalized displacements and forces dis-
tributions along the axial direction. Furthermore, in Section 3, we were able to obtain part of the exact
solution––concerning free, guided waves––only in the case of an infinite cylindrical shell. We now consider
a finite shell, and must take into account boundary conditions at both ends.

The method we propose to solve Eq. (20) is based on a discrete version of the Riccati transformation,
which provides an effective way to solve two-point boundary value problems that present exponential
dichotomy (Dieci et al., 1988). The exponential dichotomy is related to the fact that the eigenvalues of
the state matrix in Eq. (20) always appear in pairs of opposite signs. Indeed, this is a consequence of the
following property of this matrix (Pease, 1965):
TATT ¼ �AT where T ¼
0 I

�I 0

� �
ð55Þ
where I denotes the identity matrix.
The problem with the exponential dichotomy arises in the high-frequency range, when some of the eigen-

values of A have large real parts with opposite signs, resulting in rapidly decaying as well as growing expo-
nentials (Chin et al., 1984). These are associated with standing waves attenuated in both senses along the
axial direction. The solution scheme proposed here, isolates the rapidly growing exponential solutions,
which are never computed. This is accomplished, firstly, by the following decomposition of the state matrix:
A ¼
A1 A2

L1 L2

� �
K 0

0 �K

� �
A1 A2

L1 L2

� ��1

ð56Þ
where K is a diagonal matrix containing the eigenvalues of A whose real part is negative or, if purely imag-
inary, whose imaginary part is positive. These are the eigenvalues related to guided waves that propagate
or are attenuated in the positive axial direction. A1, A2, L1, L2 are matrices obtained after regrouping
the eigenvectors according to the position of their eigenvalues.

In order to proceed, we further introduce the following matrices:
k1 ¼ A1KA
�1
1 ; k2 ¼ �A2KA

�1
2

M1ðzÞ ¼ ek1z; M2ðzÞ ¼ ek2z

Z1 ¼ i
xL1A

�1
1 ; Z2 ¼ i

xL2A
�1
2

HðzÞ ¼ M1ðzÞR1M
�1
2 ðzÞ; G2ðzÞ ¼ ½Z1HðzÞ þ Z2�½HðzÞ þ I��1

ð57Þ
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where R1 is a reflection matrix, and G2 an impedance matrix. The first is defined at the left-end of the cyl-
inder (z = 0), and the second at its right-end. The impedance matrix relates generalized forces with general-
ized particles velocities. The matrix H(z) relates the group of propagating, or attenuated, partial waves in
the negative axial direction with those of opposite sense. It is this matrix that may be associated with a Ricc-
ati transformation (Dieci et al., 1988). We observe that the growing exponentials are associated with matrix
M2(z) in (57). As in Section 3, we assume that the impedance matrix at the left-end of the shell, G1, is
known. For example, if the left boundary is free, we take G1 = 0, whereas if the cylinder is clamped, we
let G1

�1 = 0. Between these two limits there are various possibilities.
We now consider a cylindrical shell as schematically shown in Fig. 9. The laminated shell is formed by N

pieces, which may be composed by different or equal numbers of layers. The interfaces between pieces are
labelled by j, running from 1 to N + 1 as is shown in the Fig. 9. Concentrated, generalized forces may be
applied at the interfaces. A laminated shell may be sub-divided in an arbitrary number of pieces.

The following algorithm, similar to that presented in Section 3, is proposed to obtain the solution. In this
algorithm the superscripts indicate the position of a homogeneous piece of the cylinder, and the subscripts
indicate the interfaces. fI represents a concentrated, generalized force applied at interface I.

For x, G1, n, and f1 given:
Repeat from j = 1 to N:
Rj ¼ �ðZj
1 �GjÞ�1ðZj

2 �GjÞ
Sj ¼ � i

x ðZ
j
1 �GjÞ�1

Hjþ1 ¼ Mj
1ðLjÞRjðMj

2ðLjÞÞ�1

Gjþ1 ¼ ðZj
1Hjþ1 þ Z

j
2ÞðHjþ1 þ IÞ�1

hjþ1 ¼ �ixðGjþ1 � Zj
1ÞM

j
1ðLjÞ

fjþ1 ¼ �hjþ1fj � fjþ1
End
At the right end of the cylinder we find the following relationship:
mNþ1 ¼ �ixGNþ1uNþ1 � fNþ1 ð58Þ

where mN + 1 and uN + 1 are the generalized force and displacement at the right end.

In order to determine the displacement field through the thickness at any interface we have to march
backwards:

Repeat from j = N to 1
u2ðjþ1Þ ¼ ðIþHjþ1Þ�1ðujþ1 �Mj
1ðLjÞSjfjÞ

uj ¼ ðIþ RjÞðMj
2ðLjÞÞ�1

u2ðjþ1Þ þ Sjfj
End
Fig. 9. Non-homogeneous laminated cylinder.
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This algorithm, based on a discrete version of the Riccati transformation, is very stable in the high-
frequency range. The key point is that only the inverse of matrixM2(z), that contains rapidly growing expo-
nentials, is evaluated. Hence, the computation of growing exponentials associated with the positive real
eigenvalues of A is avoided.

As an application example of the algorithm, we present results concerning the frequency response of a
laminated cylindrical shell, clamped at its left-boundary and excited, at the other end, by an axi-symmetric,
radial distributed load as can be seen in Fig. 10. In this case, we divided the thickness of each isotropic layer
in 10 sub-layers of equal thickness (nL = 30).

Fig. 11 shows, how the radial displacement at the point were the load is applied varies with the frequency
of excitation. Results have been compared with those obtained by employing plane axi-symmetric finite ele-
ments of the commercial code ANSYS 5.5. The FEM solution was obtained meshing the section of the lam-
inated cylinder with 7500 square, axi-symmetric, plane elements distributed as shown in the Fig. 12. When
comparing both results, one should consider the data presented in Section 4, in particular in Fig. 6. It was
shown there that the layer-wise theory is capable of accurately reproducing the frequency spectra of guided
waves propagating in the shell of Fig. 10 up to frequencies close to 10 MHz-mm.

Furthermore, we must recall that each solution of Eq. (20) represents a superposition of propagating and
standing waves of all the branches in the dispersion spectrum, which are properly combined in order to sat-
isfy the imposed boundary conditions, and that the solution obtained with the proposed algorithm is exact,
Fig. 10. Section of a clamped-free laminated cylinder (R/h = 6, R/L = 0.36).
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Fig. 11. Frequency response of a laminated cylinder (n = 0).



Fig. 12. Meshing of the section of a laminated cylinder (R/h = 6, R/L = 0.36).

A.M.B. Braga, C.E. Rivas A. / International Journal of Solids and Structures 42 (2005) 4278–4294 4293
with no approximation in the axial direction. We now return our attention to Fig. 11, and verify the good
correlation of results produced by both the layer-wise theory and the FEM analysis up to around the ninth
natural frequency. After that, for higher frequencies and shorter wavelengths, differences between the two
results start to increase. In light of the above discussion, it is reasonable to expect that results obtained with
the algorithm proposed in this paper are more accurate than those from the FEM analysis of the model in
Fig. 12, in particular at the high-frequency/short-wavelength range, and even though both models employ
the same discretization in the radial direction.
6. Conclusion

The accuracy of layer-wise laminate shell theories in the high-frequency/short-wavelength range was inves-
tigated. A model, based on Reddy�s discrete-layer theory, was developed for layered cylindrical shells.
Although, in this paper, examples were presented for shells with isotropic laminae, the formulation was devel-
oped for orthotropic layers with material symmetry axes coinciding with the axial, circumferential, and radial
directions. Generalization to other classes of anisotropy is straightforward. The governing equations, after con-
sidering harmonic fields, both in time and in the circumferential direction, were written in a state space form.

Evaluation of the model�s accuracy in the high-frequency range was based on the frequency spectrum of
free guided waves propagating in an infinite shell. Comparisons made with the exact spectrum evaluated
through the theory of elasticity have demonstrated that the layer-wise model can accurately reproduce
the spectrum of guided waves up to wavelengths that are much shorter than the shell thickness. Even
though all comparisons were made for shells with isotropic layers, the authors believe that there is no rea-
son not to suppose that the same conclusion would also hold for anisotropic laminated shells.

In order to solve the governing equation, we have proposed an algorithm based on a discrete version of
the Riccati transformation. This approach allows one to overcome the problems associated with exponen-
tial dichotomy, which could make the solution unstable in the high-frequency range, where eigenvalues of
the state matrix have large real parts. As an example, the algorithm was applied to obtain the frequency
response of a laminated cylindrical shell, clamped at one end and excited by a radial axi-symmetric load
at the other. These results were compared with those obtained with the aid of solid finite elements of a com-
mercial code. Good correlation was verified up to the ninth natural frequency.
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